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Numerical simulations of turbulent polymer solutions using the FENE-P model are
used to characterize the action of polymers on turbulence in drag-reduced flows. The
energetics of turbulence is investigated by correlating the work done by polymers on
the flow with turbulent structures. Polymers are found to store and to release energy
to the flow in a well-organized manner. The storage of energy occurs around near-wall
vortices as has been anticipated for a long time. Quite unexpectedly, coherent release
of energy is observed in the very near-wall region. Large fluctuations of polymer
work are shown to re-energize decaying streamwise velocity fluctuations in high-
speed streaks just above the viscous sublayer. These distinct behaviours are used to
propose an autonomous regeneration cycle of polymer wall turbulence, in the spirit
of Jiménez & Pinelli (1999).

1. Introduction
The addition of small amounts of long-chain polymer molecules to wall-bounded

flows can lead to dramatic drag reduction. Although this phenomenon has been
known for about fifty years, the action of the polymers and its effect on turbulent
structures are still unclear. Detailed experiments have characterized two distinct
regimes (Warholic, Massah & Hanratty 1999), referred to as low drag reduction (LDR)
and high drag reduction (HDR). The first regime exhibits similar statistical trends to
Newtonian flow: the log-law region of the mean velocity profile remains parallel to
that of the Newtonian flow but its lower bound moves away from the wall and the
upward shift of the log-region is a function of drag reduction, herein referred to as
DR. Although streamwise fluctuations are increased and transverse ones are reduced,
the shape of the r.m.s. velocity profiles is similar. At higher drag reductions, larger
than about 40%, the flow enters the HDR regime for which the slope of the log-law is
dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999;
Ptasinski et al. 2003). The drag reduction is eventually bounded by a maximum drag
reduction (MDR, Virk & Mickley 1970) which is a function of the Reynolds number.

In drag-reduced flows, a stress deficit is observed in the stress balance whose large
magnitude at HDR has been interpreted as the necessary input of energy from the
polymers to the flow for the sustenance of the asymptotic MDR turbulence (Warholic
et al. 1999). Recently, numerical simulations have allowed the simultaneous study of
velocity and polymer fields, giving the opportunity to relate turbulence and polymer
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stress directly. Several explanations have been proposed for the mechanism of polymer
drag reduction through such computations. Based on averaged budgets of kinetic and
energy, Dimitropoulos et al. (2001) observed that streamwise enstrophy is inhibited
by the extensional viscosity generated by polymers stretched by turbulence. Based on
a similar argument, Ptasinski et al. (2003) related the damping of vortices to a shear
sheltering effect occurring in the near-wall region which would effectively decouple
the outer layer vortices from the inner layer. Neither paper proposes a mechanism
for the injection of energy from polymers to turbulence. Min, Yoo & Choi (2003a)
and Min et al. (2003b) analysed their simulation in terms of elastic energy, observing
a significant transport of this energy from the viscous sublayer to the buffer layer
and the log region. They derived a criterion for the onset of drag reduction based
on the relaxation time and the time required for polymers to travel from the viscous
sublayer to the buffer layer. These authors explain MDR by the release of energy
into the buffer layer, which would be sufficient to sustain turbulence. All these studies
have relied on the study of the time- and space-averaged statistics.

Near-wall vortices, critical to the production of wall friction (Kravchenko, Choi &
Moin 1993), occupy a volume of about 10% of the buffer region in Newtonian flows
and the streamwise vorticity fluctuations they generate in their core and immediate
surroundings exceed the standard deviation of ωx by a factor of 2 or more (Dubief &
Delcayre 2000). Since ultra-dilute solutions of polymers are not expected to change
significantly the properties of the flow, the effect of polymers can be assumed to
be local and triggered by the most energetic turbulent structures. This assumption
implies that the action of polymers is likely to be as intermittent as the near-wall
vortices. Intermittent events are hidden by the averaging procedure and it seems
therefore natural to find an approach which reveals the dynamics of these rare events.

The intermittency of polymers in turbulent flows is addressed here by identifying
regions of the flow where polymers dampen or enhance turbulence. Viscoelastic direct
numerical simulations, using the FENE-P model, provide the requisite information.
After a brief presentation of the flow conditions and viscoelastic parameters, the
contribution of polymer work to the instantaneous budget of energy of each velocity
component is characterized in the near-wall region. Intermittency is captured by
using joint probability functions and by focusing on the large and rare fluctuations of
polymer work (defined in § 4). Finally, a model of drag-reduced near-wall turbulence
is proposed based on the autonomous regeneration cycle of near-wall turbulence of
Jiménez & Pinelli (1999).

2. Governing equations and numerical method
The formalism of the constitutive equations for viscoelastic flows typically includes

the assumption of uniform concentration of the polymer solution, and the momentum
equations thus become

∂t ũi = −ũj ∂j ũi − ∂ip̃ +
β

Re
∂j∂j ũi + [(1 − β)/Re]∂j τ̃ij︸ ︷︷ ︸

f̃ i

, (2.1)

where β is the ratio of the solvent viscosity ν to the total viscosity and effectively
controls the concentration of polymers. Hereafter, ã represents the instantaneous
value of variable a which is the sum of its mean ã = A and instantaneous fluctuations
a. The flow investigated here is the channel flow, for which the Reynolds number is
defined as Re = Uch/ν, based on the centreline velocity of a Poiseuille flow, Uc, and
the channel half-width, h. Note the addition of an extra term, which will be hereafter
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referred to as the polymer body force, f̃i . The polymer stress tensor τ̃ij in f̃i is obtained
by solving the FENE-P (finite elastic non-linear extensible-Peterlin) equation,

∂t c̃ij = − ũk∂kc̃ij︸ ︷︷ ︸
advection

+ c̃kj ∂kũi + c̃ik∂kũj︸ ︷︷ ︸
stretching

− 1

We

(
c̃ij

1 − c̃kk/L2
− δij

)
︸ ︷︷ ︸

=τ̃ij :relaxation

+ κD(c̃ij ), (2.2)

where the conformation tensor, c̃ij , is the phase average of qiqj , qi being the
component of the end-to-end vector of each individual polymer which has a maximum
dimensionless extensibility L. The Weissenberg number We is the ratio of the polymer
relaxation time λ to the flow time scale, such that We = λU/h. The numerical method
is essentially that of Min et al. (2003b) modified to simulate very elastic and long
polymer molecules and is described and validated in Dubief et al. (2004). In the present
paper only a brief outline of the method is given. The momentum equations are solved
on a staggered grid with second-order central finite differences. The divergence of the
polymer stress (2.1) and the spatial derivatives of c̃ij are computed using a fourth-
order compact scheme and a third-order upwind compact scheme, respectively. Time
advancement of (2.1) and (2.2) is performed by the classical semi-implicit second-
order Crank–Nicolson/third-order Runge–Kutta scheme. In the momentum equation,
the Newtonian viscous stress is treated implicitly in the wall-normal direction.
Equation (2.2) is solved with a new semi-implicit time scheme which ensures that
the trace of the c̃ij remains upper bounded (c̃kk <L2). A local artificial viscosity
(LAD), proposed by Min et al. (2003b), is necessary to ensure the stability of the
advection term as well as a lower diffusive effect than a global dissipation as adopted in
Dimitropoulos et al. (2001) and Ptasinski et al. (2003). The LAD is represented in (2.2)
by κD(c̃ij ), where κ is non-zero only in regions where the conformation tensor loses
its positive definiteness and the operator D is defined as �2

k∂
2
k , �k being the local grid

spacing in the k-direction. For the present simulations, κ is equal to 0.1. For further
information regarding the impact of LAD on the flow, refer to Dubief et al. (2004).

Finally, as in any simulation involving dramatic reduction of drag, particular care
with the dimensions of the computational domain is required. Here, simulations are
performed in a channel flow, where periodic boundary conditions are enforced in the
streamwise and spanwise directions (x and z, respectively) and no-slip is prescribed in
the wall normal direction, y. The streamwise and spanwise dimensions are larger than
for a typical Newtonian simulation due to the coarsening of near-wall structures as
observed experimentally by White, Somandepalli & Mungal (2004). Their experiment
shows that the streamwise coherence of the streaks could be increased by an order of
magnitude of the Newtonian length scale l+ ∼ 1000, where the superscript + denotes
normalization by inner scaling based on the kinematic viscosity ν and the friction
velocity uτ =

√
ν(dUx/dy)wall . In a preliminary parametric study for 60% drag

reduction, streamwise correlations of velocity were indeed found to be small yet finite
even for L+

x = 6000 based on the Newtonian friction velocity, while L+
z = 1000 proved

to be sufficient. Decreasing L+
x to 4000 had a negligible impact on the magnitude

of drag reduction, less that 5%, well within the convergence error of statistics, and
this length was adopted for the present study. Note that reducing the domain size to
L+

x × L+
z = 1000 × 300 leads to a drag reduction comparable to that of Maximum

drag reduction, 72% instead of 60%. Periodic conditions in that case totally damp
all the scales larger than the domain. Nevertheless, the turbulence was found to be
self-sustained in a similar fashion to the minimal channel flow of Jiménez & Moin
(1991) which contains only a pair of streaks and vortices. This point is further
discussed in Dubief et al. (2004).
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Line/symbol L Weτ0 = λu2
τ0/ν We = λU/h β DR

0%
� 100 36 3 0.9 35%
� 60 84 7 0.9 47%
� 100 120 10 0.9 60%

Table 1. Polymer parameters used for the viscoelastic simulations. The Weissenberg number
Weτ0 is normalized by the wall-shear stress for the Newtonian simulation (DR = 0%).

Simulations are performed at an intermediate Reynolds number, Rec = 7500, or
a bulk Reynolds number of ReM = 5000. Conservation of the mass flow is imposed
which gives h+ = huτ/ν = 300. The resolution is �x+ = 9, �y+ = 0.1–5 and �z+ = 6,
when normalized by the skin friction at DR = 0%. Statistics are collected over 300 to
400 convection times h/U , starting after the transient period.

3. A brief statistical description of drag-reduced flows
In the following, the simulations are referred to by the amount of drag reduction:

DR = 35%, DR = 47% and DR = 60% (cf. table 1). As shown in table 1, the FENE-P
model requires fairly high Weissenberg numbers to achieve HDR with long-chain
polymers, while HDR has experimentally been measured for We ranging from unity to
100. This observation holds for all published simulations and using a FENE-P model.
For this model, large stress can only be obtained when polymers are significantly
stretched. In the two viscoelastic simulations discussed here, polymers are stretched
to less than 50% of their maximum extension, with ckk/L

2 < 35% on average for
DR = 60%. In this regime of mild extension, internal modes may be expected to play
an important role and are not represented in the FENE-P model. This argument
and perhaps also the low Reynolds number are a reasonable explanation for the
overestimation of drag-reducing Weτ . We shall not discuss this issue further, since
our goal is to understand how (2.1) and (2.2) produce flows whose characteristics
are qualitatively identical to polymer drag-reduced flows observed experimentally.
Turbulence statistics are presented here to validate the present simulations and
introduce the reader to the mean effect of polymers on turbulence.

As expected from experiments (Warholic et al. 1999), DR = 35% produces a velocity
profile whose log region is only shifted upward, while DR = 47% and DR =60% show
significant changes in the slope of the log law (figure 1). Although we did not attempt
to determine an accurate limiting value, the transition between LDR and HDR seems
to be near 40% DR, in agreement with Warholic et al.’s measurements. The turbulent
velocity fluctuations in the transverse directions exhibit a different behaviour than
in the streamwise direction. The peak of u′

x (a′ denotes the root mean square of a

fluctuations) shifts away from the wall and its magnitude increases slowly compared
to the Newtonian flow when normalized by uτ . The wall-normal component u′

y follows
an opposite trend; u′

z behaves as u′
y and consequently does not appear on the plot

for clarity. In drag-reduced flow, the maximum of u′+
x is higher than or comparable

with the DR = 0% case, as found in experiments (Warholic et al. 1999; Ptasinski
et al. 2003; White et al. 2004). The strong reduction of the transverse fluctuations
suggests that polymers target preferentially the vortices, as they produce significant
fluctuations of uy and uz.
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Figure 1. (a) Mean velocity profiles scaled with inner variables. : MDR asymptote,
U+ = 11.7 ln y+ − 17. Symbols and lines are defined in table 1. (b) RMS of velocity fluctuations
scaled with inner variables. Newtonian simulation (DR= 0%): , u′+
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y . For

the viscoelastic simulations, symbols are defined in table 1, u′+
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Figure 2. Reynolds shear stress ( , � and � as in table 1) and polymer stress ( ,
DR = 35%; , DR = 60%) normalized by uτ and ν. DR = 47% is not plotted for clarity.

The balance of shear stress,

−uxuy
+ −

(
1 − y+

h+

)
+ β

dU+
x

dy+
+ (1 − β)T +

xy = 0, (3.1)

contains significant information on the mechanism of polymer interaction with the
mean flow. In (3.1), Txy is the average of τ̃xy . As indicated in figure 2, the Reynolds
shear stress is reduced with increasing drag reduction. For DR = 60%, −uxuy

+ is
approximately a third of its magnitude in the Newtonian case. Conversely, the
polymer stress increases with increasing drag reduction. At DR =60%, its near-wall
contribution to (3.1) has the same magnitude as the Reynolds shear stress, thus
showing that polymers have a significant mean effect in the mechanism of HDR
flows, as argued by Warholic et al. (1999).

4. The role and intermittency of polymer work
As suggested in § 1, a factor that has been overlooked in the existing literature is the

intermittency of the polymer action on turbulence. In wall flows, energetic structures
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Figure 3. (a) Correlation of velocity–viscoelastic stress equation (4.2) in the streamwise
( , �), wall-normal ( , �) and spanwise ( , �) directions. Lines: DR= 60%;
Symbols: DR =35%. (b) Probability density functions of Ex ( ), Ax ( ) at y+ =5 for
DR = 60%.

close to the wall are only an order of magnitude larger than the smallest turbulent
scale. These structures are the quasi-streamwise vortices which occupy less than 10%
of the volume of the buffer layer (Dubief & Delcayre 2000), yet they are essential to
momentum exchanges between outer and inner regions in the flow and are responsible
for turbulent skin friction drag (Kravchenko et al. 1993). If polymers inhibit only
vortices as suggested by the reduction of enstrophy observed by Dimitropoulos et al.
(2001), polymer dynamics has to be intermittent.

To characterize the energy which is stored or released by polymers from each
fluctuating velocity component, we consider the Reynolds stress equation (where
summation does not apply to the subscript α)

1

2
∂tu

2
α = (−uα∂juαuj )︸ ︷︷ ︸

Aα

+ (−uα∂α)p︸ ︷︷ ︸
Pα

+ (β/Re)uα∂j∂juα︸ ︷︷ ︸
Vα

+ [(1 − β)/Re]uα∂j ταj︸ ︷︷ ︸
Eα

. (4.1)

The relation between polymers and turbulence enters through the polymer work Eα ,
the product of the velocity and polymer body force, which could dampen (Eα < 0)
or enhance (Eα > 0) the energy carried by velocity fluctuations uα . The other terms
denote work by advection Aα , pressure redistribution Pα and viscous stress Vα; the
sum of these terms will be later referred as to Newtonian work.

Figure 3(a) shows the evolution of the correlation between velocity and polymer
body force,

ρα =
uαfα

u′
αf

′
α

=
Eα

u′
αf

′
α

(4.2)

throughout the near-wall region for LDR and HDR. The correlation also provides
an average measure of the polymer work. If the correlation is positive (negative), the
body force fα has the tendency to increase (decrease) the fluctuation uα , which is
equivalent to positive (negative) work. Very close to the wall, most of the wall-normal
velocity fluctuations are increased while almost all the spanwise ones are dampened
by polymers. Since uy velocity fluctuations are extremely weak in this region (see
figure 1b), the impact of an increase on turbulence is negligible, as it will be discussed
in § 5. In the viscous sublayer, streamwise velocity fluctuations are dampened by
polymers on average. However, in a region that begins on the upper edge of the
viscous sublayer (y+ � 3–5) and whose width grows with increasing DR, ux is
enhanced on average by the polymer body force. By numerically forcing fy = fz = 0,
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Dubief et al. (2004) showed that fx alone has the effect of increasing drag and therefore
turbulence, in spite of its turbulence damping property observed in the rest of the
channel. Figure 3(a) suggests that this increase may arise from this region of positive
ρx , also observed for uncoupled simulations (β = 1, not shown here). The qualitative
behaviour of ρα shows very little dependence on the regime of drag reduction, LDR
or HDR. Quantitatively, correlations just become stronger with increasing DR. The
anti-correlation of velocity and polymer body force has also been reported by Stone,
Waleffe & Graham (2001) and De Angelis, Casciola & Piva (2002) for LDR flows.

Figure 3(b) shows probability density functions (p.d.f.) of the different work terms in
(4.1) for DR = 60% at y+ =5 (streamwise momentum). The stretched exponential tails
of the p.d.f.s identify a strong intermittent behaviour of the structures producing large
fluctuations of Aα and Eα; as the shape of Vα and Pα is similar, these are not shown
for clarity. The p.d.f. of Ex is nearly symmetric for P (Ex) > 10−3. Below this value,
the p.d.f. shows an obvious positive skewness. Rare events producing large positive
polymer fluctuations are therefore more probable than ones generating negative work
of the same magnitude. It should be noted that all p.d.f.s of Eα show the same type
of exponential tails, skewed in the negative side for y+ > 25 (not shown here).

In figure 4, joint probability functions are used to illustrate the interesting
correlations between large fluctuations of polymer work and turbulent structures.
Each variable plotted here is normalized by its standard deviation and only the data at
HDR are shown for clarity. We should point out that all the characteristics of the joint
p.d.f.s presented here are identical at LDR, implying that the turbulence/polymers
interaction is independent of the regime of drag reduction.

The most striking feature of polymer work is in the region where the correlation
velocity/polymer body force ρx is positive (Figures. 4a–d). Large fluctuations of
polymer work are exclusively contained in regions of positive streamwise velocity
fluctuations (Figure 4a, solid contours). The magnitude of these fluctuations, above
3 times the standard deviation, corresponds to roughly 10% of the centreline mean
velocity which is the typical velocity scale in high-speed streaks. In Newtonian channel
flows, high-speed streaks receive a large contribution from downwash flows generated
by the overlying vortices. However, as discussed earlier, these vortices are intermittent.
Therefore the coherence inside high-speed streaks, which are typically longer than
quasi-streamwise vortices, exceeds the duration of downwash flows. Figure 4(a)
(dashed contours) shows that downwash, as well as upwash, flows(large fluctuations
of uy) produce negligible polymer work, while the largest positive fluctuations of Ex

occur for near-zero fluctuations of wall-normal velocity. Figure 4(a) therefore indicates
that the release of energy occurs after polymers are swept in this region around y+ ∼ 5
through downwashes or before they are ejected away from the wall by an upwash.
Comparing Newtonian work (Nx = Ax + Px + Vx) to polymer work at HDR reveals
that large positive polymer work is triggered in regions where Newtonian turbulence
would have a natural tendency, through viscosity mostly, to decrease the energy of
streamwise velocity fluctuations (Figure 4b, dashed contours). Yet the net growth
rate of energy ( 1

2
∂tu

2
x) is positive in these regions. The importance of this injection

of energy into the flow has been assessed in a numerical experiment reported in
Dubief et al. (2004). The numerical cancellation of fx in (2.1) for y+ < 20 leads to full
relaminarization of the flow, demonstrating that the positive fluctuations of Ex play
a crucial role in the self-sustained mechanism of near-wall turbulence at HDR.

The turbulent-drag-reducing property of polymer flows is observed in the buffer and
log regions where polymer work is mostly negative (see figure 3a). As discussed earlier,
polymers dampen vortices via fy and fz. Figure 4(c,d) represents the distribution of
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Figure 4. Joint probability density functions of polymer work vs. other relevant quantities.
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data at DR= 60% are shown. (a) Ex vs. ux ( ) and uy ( ) at y+ = 5. (b) Ex vs.
Nx = Ax + Px + Vx ( ) and 1

2
∂tu

2
x ( ) at y+ = 5. (c) Ey vs. ux ( ) and uy ( )

at y+ = 50. (d) Ey vs. Ny = Ay + Py + Vy ( ) and 1
2
∂tu

2
y ( ) at y+ = 50.

Ey at y+ = 50, which shows strong negative skewness. Extraction of turbulent energy
by polymers predominantly occurs in upwash flows, i.e. (ux < 0, uy > 0) (Fig. 4c) but
also takes place in downwash flows (ux > 0, uy < 0). Large negative fluctuations of
Ey are observed in regions of positive growth rate of u2

y (Figure 4d , solid contours)
where polymer work opposes Newtonian work (figure 4d , dashed contours). Unlike
the injection of energy in the streamwise direction at y+ = 5, the extraction of energy
by the polymers from the flow does not reverse the growth rate of u2

y .

5. Mechanism of drag-reduced wall turbulence
The joint p.d.f.s presented in figure 4(a,b) show how polymers enhance the stream-

wise momentum in high-speed streaks located around y+ = 5. Polymers are allowed
to coil in these regions due to the reduction of turbulent kinetic energy by viscous
dissipation as shown in figure 4(b). Extraction of energy from near-wall vortices
by polymers occur as polymers are pulled around the vortices, either by upwash
or downwash flows. Using Brownian dynamics simulations, Terrapon et al. (2004)
showed that polymers experience significant straining around vortices, leading to large
stretching. The importance of each transfer of energy for the self-sustained turbulence
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Figure 5. (a) Sketch of the cycle of wall turbulence regeneration with energy transfer from
the polymers to the flow and vice versa, denotes the action of polymers on turbulence,

the main actions of stretching. (b) Vortex pumping fluid from the near-wall region
and creating turbulence-damping polymer work and re-injecting stretched polymers into the
near-wall region, thereby generating turbulence-enhancing polymer work.

in drag-reduced flows has been established by simple numerical experiments reported
in Dubief et al. (2004).

Based on these results, we propose to include the effects of polymers in the
autonomous regeneration cycle put forward by Jiménez & Pinelli (1999). This cycle,
shown in figure 5, explains how wall turbulence is self-sustained through mean shear,
nonlinear interactions, near-wall vortices and streaks, in the Newtonian case. Polymers
fit at the centre of this cycle by extracting energy from the vortices and releasing
energy in the streaks. The stretching of polymers is governed by the mean shear and
nonlinear interactions as shown in Terrapon et al. (2004). This simple mechanism
appears to apply to LDR and HDR regimes, and it should apply to any regime
where streaks and vortices are present. Figure 5 also contains a sketch of the different
actions of polymers around a vortex. Only the most dramatic phenomena, vortex
damping and near-wall high-speed streaks enhancement are highlighted.

The phenomenology of the model in figure 5 shares many similarities with the
different models proposed by previous efforts on the subject. It contains the damping
of near-wall vortices discussed by Dimitropoulos et al. (2001), Stone et al. (2001), Min
et al. (2003b) and Ptasinski et al. (2003). The originality of the model resides in the
characterization of the drag-reducing and turbulence-enhancing effects of polymers.
Our data indicate that the turbulence-enhancing effects is confined in the near-wall
region and affects predominantly the streamwise velocity fluctuations. This analysis
which comes from the study of small-scale quantities such as polymer work, differs
from the interpretation of Min et al. (2003a) of the behaviour of elastic energy which
is a larger scale quantity than polymer body force and gives the impression that
elastic energy is released in the buffer and log layers.

6. Conclusion
Simulations of high drag reduction by a constitutive polymer model, FENE-P, have

been presented. Statistical results reproduce the main features observed experimentally
and in other numerical studies (Ptasinski et al. 2003; Min et al. 2003a). The bulk of this
work consists of the characterization of the action of polymers on turbulent structures.
This is achieved by studying the intermittent behaviour of Eα = [(1 − β)/Re]uα∂kταk

through which polymers can dampen or enhance turbulence.
The drag-reducing and turbulence-enhancing properties of polymers are closely

related to coherent turbulent structures. Polymers dampen near-wall vortices but also
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enhance streamwise kinetic energy in near-wall streaks. The net balance of these two
opposite actions leads to a self-sustained drag-reduced turbulent flow. The study of
polymer work characterizes where polymers are most likely to release energy into the
streaks. The phenomenon are related to regions where the streamwise kinetic energy
u2

x would actually decrease in the absence of polymers. The release of energy in this
region, which counteracts the viscous effects, occurs after polymers have resided in
the streak but not when they have been transported from the buffer region to the
streak through downwash flows initiated by vortices. Turbulence damping takes place
in flows generated by vortices, therefore upwash and downwash flows occur around
vortices with a preference for the upwash events, due to the pre-stretching caused
by the higher shear close to the wall. This mechanism of polymer drag reduction is
presented as a modified auto-regeneration cycle of wall turbulence.
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